Patient Name:
 Jane Doe
 Patient DOB:
 01/01/1970

 Sample Collection Date:
 08/09/2025
 Report Date:
 01/10/2025

## TEST REPORT





### REPORT DETAILS

**GENE PANEL** 

Forename: Jane Hospital ID: 121212 Surname: Doe Report Date: 01/10/2025

**DOB**: 01/01/1970 **Test Requested:** Long QT syndrome – Expanded panel

Biological sex: Female

SAMPLE DETAILS HEALTH PRACTITIONER DETAILS

Sample ID:LO-000001-1Full name:Dr CardiologySample Type:Whole BloodInstitution:Hospital

Collection Date: 08/09/2025 Email Adress:
Receipt Date: 09/09/2025 Report Copy (CC):

### **CLINICAL DETAILS**

**Referral Reason:** Clinically affected with prolonged QT. No reported family history.

### **RESULTS**

# KCNQ1 variant detected Heterozygous for NM\_000218.3 c.1780C>T p.(Arg594Ter)

Consistent with a genetic diagnosis of familial Long QT Syndrome.

This patient is heterozygous for a likely pathogenic KCNQ1 variant (details below).

Monoallelic pathogenic *KCNQ1* variants are associated with Long QT Syndrome. This result is consistent with the clinical phenotype provided for this patient.

Given the genetic implications of this result, it is recommended that the patient and their family be referred for genetic counselling. Offspring have a 50% risk of inheriting this variant and being at increased risk of developing the associated disorder. The reported variant may be used for predictive testing for appropriate family members, following genetic counselling.

| VARIANTS WITH POSSIBLE RELEVANCE TO THE PATIENT'S CLINICAL DETAILS |                                                                               |      |             |              |                   |  |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------|------|-------------|--------------|-------------------|--|
| Gene                                                               | HGVS Description                                                              | Exon | dbSNP       | Zygosity     | Classification    |  |
| KCNQ1                                                              | NM_000218.3 c.1780C>T<br>NP_000209.2 p.Arg594Ter<br>NC_000011.10:g.2778023C>T | 15   | rs794728537 | Heterozygous | Likely Pathogenic |  |

Analyses performed by Clinical Scientist: CS-2003

Approved by Clinical Geneticist: CG-2001

 Patient Name:
 Jane Doe
 Patient DOB:
 01/01/1970

 Sample Collection Date:
 08/09/2025
 Report Date:
 01/10/2025

### TEST REPORT

### **GENE PANEL**





#### **VARIANT INTERPRETATION**

| Supporting evidence for variant classification                                                                                     | Rule_Strength    |
|------------------------------------------------------------------------------------------------------------------------------------|------------------|
| This nonsense variant results in a truncated protein with loss of region critical to                                               | PVS1_Moderate    |
| function. Loss-of-function is a known mechanism of disease for this gene.                                                          |                  |
| This variant has been reported in at least 10 unrelated patients affected with long QT                                             | PS4_Strong       |
| SVNOTOME IPIVIII): 27479201: PIVIII): 32893267: PIVIII): 374495621                                                                 |                  |
| This variant is found at very low frequency in large control databases (allele frequency of 0.001% in the gram AD database v4.0.0) | DM2 Supporting   |
| of 0.001% in the gnomAD database v4.0.0)                                                                                           | riviz_oupporting |

#### REFERENCES

Qureshi SF, Ali A, Venkateshwari A, Rao H, Jayakrishnan MP, Narasimhan C, Shenthar J, Thangaraj K, Nallari P. Genotype-phenotype correlation in long QT syndrome families. Indian Pacing Electrophysiol J. 2015 Dec 17;15(6):269-85. doi: 10.1016/j.ipej.2015.12.001. PMID: 27479201

Walsh R et al; Nantes Referral Center for inherited cardiac arrhythmia; Behr ER, Barc J, Bezzina CR. Enhancing rare variant interpretation in inherited arrhythmias through quantitative analysis of consortium disease cohorts and population controls. Genet Med. 2021 Jan;23(1):47-58. doi: 10.1038/s41436-020-00946-5. Epub 2020 Sep 7. PMID: 32893267

Sveinbjornsson G, Benediktsdottir BD, Sigfusson G, Norland K, Davidsson OB, Thorolfsdottir RB, Tragante V, Arnadottir GA, Jensson BO, Katrinardottir H, Fridriksdottir R, Gudmundsdottir H, Aegisdottir HM, Fridriksson B, Thorgeirsson G, Magnusson V, Oddsson A, Sulem P, Gudbjartsson DF, Holm H, Arnar DO, Stefansson K. Screening for Rare Coding Variants That Associate With the QTc Interval in Iceland. J Am Heart Assoc. 2023 Jul 18;12(14):e029845. doi: 10.1161/JAHA.123.029845. Epub 2023 Jul 14. PMID: 37449562

### **METHODS**

**Laboratory process**: Genomic DNA was extracted from the participant's whole peripheral blood. Target enrichment was performed on the patient's genomic DNA using Twist Bioscience for Illumina Exome 2.5 Panel and the Twist Bioscience for Illumina Mitochondrial Panel. Whole Exome Sequencing (WES) was performed using a NovaSeq 6000 instrument, with on-target coverage average >100x, and with >93% of exome target being covered >= 20x.

**Bioinformatics and quality control:** Raw sequencing FASTQ data was aligned to the GRCh38/hg38 reference genome. Alignment and small variant calling of single nucleotide variants (SNVs), indels (+/- 20 bp from exon-intron border), copy number variants (CNVs), and mitochondrial variants were performed using the DRAGEN workflow (Illumina) within the Emedgene platform (version 35). VCFs and BAMs were analysed on the Emedgene platform (Illumina). The patient's sample was subjected to thorough quality control measures including assessment for sample quality, coverage and contamination.

Gene Panel content: AKAP9, ANK2, CACNA1C, CALM1, CALM2, CALM3, CAV3, KCNE1, KCNE2, KCNH2, KCNJ2, KCNJ5, KCNQ1, SCN4B, SCN5A, SNTA1, TRDN

Case interpretation and reporting: The report includes Pathogenic or Likely Pathogenic variants identified on the subset of genes on the panel selected (these genes are listed on the Gene Content section above). Variants of unknown significance (VUS) are not standardly reported. A VUS identified in a clinically relevant gene may be reported as a supplemental finding, where there is a high level of evidence supporting pathogenicity, and where further family history, familial testing or phenotypic evidence may help re-classify the variant. Likely benign and benign variants are not reported. VUS may be discussed with the Requesting Health Practitioner on request within 6 months of issuing the report. Single heterozygous variants in genes associated with recessive inheritance are not standardly reported.

Variants are reported according to HGVS nomenclature (<a href="www.hgvs.org/mutnomen">www.hgvs.org/mutnomen</a>). The predicted variant classifications are based on ACMG/AMP 2015 SNV classification guidelines (PMID: 25741868), ACMG/AMP 2020 CNV classification guidelines (PMID: 31690835), and ACMG/AMP 2020 mitochondrial classification guidelines (PMID: 32906214), including any differences in classification arising from the ClinGen rule specifications (<a href="https://www.clinicalgenome.org/working-groups/sequence-variant-interpretation/">https://www.clinicalgenome.org/working-groups/sequence-variant-interpretation/</a>), ACGS 2024 (<a href="https://www.acgs.uk.com/media/12533/uk-practice-guidelines-for-variant-classification-v12-2024.pdf">https://www.acgs.uk.com/media/12533/uk-practice-guidelines-for-variant-classification-v12-2024.pdf</a>) and ClinGen Variant Curation Expert Panels (VCEPs; <a href="https://clinicalgenome.org/affiliation/vcep/#ep table heading">https://clinicalgenome.org/affiliation/vcep/#ep table heading</a>).

Variant validation: Reported SNVs and Indels were validated by Sanger sequencing. Reported CNVs were not validated by Sanger sequencing due to assay limitations.

**Test restrictions:** Absence of a disease-causing variant does not exclude the possibility of a genetic basis for the disorder in the patient. It is possible that a particular variant may not be recognised as the underlying cause of the patient's genetic disorder because the clinical implications of this variant may not be known at the time of this report. It is also possible that the classification of variants may change in the future due to improvements in scientific understanding. Test results should always be interpreted in the context of clinical findings, family history, and other relevant laboratory data. Inaccurate, or incomplete information may lead to misinterpretation of the results.

**Technical limitations:** Some genetic abnormalities may not be detectable with the current technologies performed, including: variants in untargeted regions (e.g. variants in the promoter or intergenic regions), inversions, balanced translocations, repeat expansions, non-coding variants deeper than ±20 base pairs from exon-intron boundary. In addition, this test may not reliably detect some types of variants, including: low level mosaicism, low level mitochondrial heteroplasmy, variants in mononucleotide repeat regions, indels larger than 50 base pairs, deletions or duplications with size lower than 10 Kb, variants within regions with suboptimal coverage (e.g. variants within pseudogene regions, repeat elements, segmental duplications, and high GC content regions). Detection sensitivity and specificity for SNVs: 99.6% and 99.8%, and for indels: 95.6% and 95.3%, respectively. The sensitivity and specificity for CNV detection is dependent on location and size, therefore the absence of a reported CNV does not exclude the possibility of the presence of a CNV.